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BY  

L. A. SHEPP 

O) 

A B S T R A C T  

Arcs of  lengths In, 0 < ln+l < In < I, n = I, 2 . . . . .  are thrown indepen- 
dently and uniformly on a circumference C of unit length. The union of the 
arcs covers C with probability one if and only if 

n -2exp( l l  + ... + l.) = oo. 
n = l  

1. Introduction 

We say that a given sequence {lx} covers if almost surely (a.s.) every point of C 

belongs to some arc. I f  Y,l n = oo, eachfixed point x e C is a.s. covered by some 

arc because 

P,(x is not covered) = ]~I (1 - In) = 0. 
n = l  

Dvoretzky [2] gave the first examples of  sequences {/~} with E l~ = oo which do 

not cover and posed the problem settled here of finding necessary and sufficient 

conditions that {l~} covers. 

Billard [1], and later Kahane [4] in a very elegant way, proved: (a) 

(2) lira sup 1/n exp (li + "'" + l,) = oo 
n--* oo 

is sufficient for covering, and (b) 

(3) ~ /2exp(/1 + ... + 1 , )= oo 
n = l  

is necessary for covering. Orey [7], using topological as well as probabilistic 

methods to study the number of  components of  the union of the first n arcs, 

improved (a) by showing that: 
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(2') lira sup 1 / n e x p ( l l  + ... + l,,) > 0 
n ...t. o o  

is sufficient for covering. The case I, = 1/(n + 1) which had remained unsettled 

until Orey's work was independently shown to be a case of covering by Mandelbrot 

[-5"1, [6]. Mandelbrot considered an interesting related problem where the lengths 

I, are also random and succeeded in applying the results to settle the above case in 

particular.* 

We obtain that (1) is a necessary and sufficient condition for covering and in 

Sec. 7 show that the previous results follow directly from (1). I f  0 < I. < 1 but 

{l.} is not monotonically decreasing then covering takes place if  and only if  (1) 

applies to the sequence {l.} rearranged in decreasing order; if  I. cannot be rear- 

ranged in decreasing order, 1. does not tend to zero and covering takes place 

trivially because an infinite subsequence of {/.} can be found bounded away from 

zero (and (1) can then be used.) Thus (1) settles the problem completely. 

In See, 7, we show that whenever C is covered, it is covered infinitely often 

almost surely and also give some examples and remarks. Finally in Sec 8, we 

obtain some new results on the distribution of the time to cover C by arcs of  

equal lengths. 

We use a new method to prove that (1) is sufficient for covering based on 

conditioning with respect to the first uncovered point in an orientation of C. 

2. The basic lemma 

Let n arcs (open intervals)I1,12, . . . , I  n of lengths ll, l z , . . . , l  n be obtained by 

choosing their centers independently and uniformly distributed on C. Denote 

v .  = U o,i,. 
Suppose A c C is a fixed finite set of points and t and 0 are points of  C not in A. 

PROPERTY re. We say that t, 0, A have property rc if  any arc of length max 

(Ix, "", ln) which contains t and intersects A must also contain 0. We picture 0 as 

lying between t and A with t close to A. 

LEMMa 1. I f  t, O,A have property ~ then 

(4) P(A  ~ U, [ 0 q~ U.)  < P(A = U. [ 0 r U,, t r U,). 

We remark that (4) is intuitive since any arc in U. which covers t cannot touch A 

* The inequalities (16) and (26) below yield much more: In particular it follows for 
l n = 1/(n + 1) that Pn = the pro bability that the first n arcs fail to cover satisfies 
0 <  cl <p,,  l o g ( n + l )  < c  z < ~ .  
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under the condition 0 r U n. To prove (4), let J1 and Kx be arcs of length 11 obtained 

as follows: Let 1 2 I1 , I1 , ' "  be arcs of length 11 each chosen independently and 

uniformly on C. Let J l  be the first arc I~ for which 0 r I t ,  and let K1 be the first 

arc I]  for which 0 ~ 1] and tr  1], noting that k > j. Let J 2 , ' " ,  J ,  and K2 , ' " ,  K~ 

be defined similarly. Since the distribution ofJ~, ..., Jr is the same as the conditional 

distribution of I~ , . . . , I ,  under the condition O~U,,  

Since the distribution of K~, ..., Kn is the same as the conditional distribution of 

I1, ...,In under the condition 0 ~ U~ and t ~ Un, 

But if t E Ji then Ji ~ A = ~ because of property rr, while if t ~ Jt then Jt = Kt. 

Thus in any case Jt O A  = K t ~ A ,  i = 1, . . . ,n and so 

(4) is immediate from (5), (6) and (7). 

Finally using Bayes' rule we can rewrite (4) as 

(8) P(t~Un[ O~ Un) < P(t~ UnIA = U~,O~ Un). 

3. Covering; sufficiency 

Coordinatize C = {0 < t < 1} in counterclockwise orientation and let It 

= (0~, 0~) where 0"and 0~ are the coordinates of the endpoints of It with O' i clockwise 
= n I from 0 i along points of It. Let o (01, " ' ,  0n) and U,(og) = Un = I,.Jj= 1 j. Set 

10 if t~U,(co), 0 <  t < 1. 
(9) x(t, co) = if t ~ U.(6o) 

The Lebesgue measure of the uncovered part of the arc (a, b), 0 _<_ a < b < 1 is 

given by 

(10) m(a, b, o~) = X(t, co) dt. 

We have with re(a, b) = re(a, b,co), 

fb (11) Em(a ,b )  = P(t~ Un)dt = (b - a)P(O~ Un). 
a 
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Choose and fix 8 > 0 for which 

(12) 8 < 1 - Ii, i = 1,..-, n. 

Heuristically, the idea of the covering method is as follows: Let z (co) be the 

first uncovered point of [0, 8) if there is one. Then 

fo" I Ern(O,O = dP(z < O)E[m(O,s) "r = O] 

fo = a P ( ~  < o)E[m(o,8) I [o, o) ~ u., o r u.]  

/, ~/2 

(13) >= ~o dP(~ < O)E[m(O,O + 8/2) t I-0,0) = U.,Or U.] 

> )o dP(z < O)E[m(O,O + 8]2) I 0 r  U,] 

by using (8) with A = [0, 0) integrated over t e (0, 0 + 8/2), noting that zc holds by 

(12). The integrand in the last term is clearly not a function of 0 by rotational 

symmetry so we may put 0 = 0. This gives 

(14) Em(O,8) >= P(z < 812)E[m(O,e/2)[Or U,]. 

Since from (10) and (11) we have 

E m(0, 8) = e P(0 ~ U.) (15) 
/~e/2 

Elm(0, e ]2) I 0 r U.] = Jo P(t r U. I 0 (E V.) d t 

and since z =< e/2 if and only if [0 8/2] is not covered we get the useful inequality 

/ /.~t2 
(16) P([O,8 /2)egU, )<ep(ocu , ) / J  ~ P(tq~U, lO(sU,)dt. 

The above argument while convincing is not a proof because the second inequality 

in(13) is obtained from (8) in a case where A is not finite and 0E closure of A which 

is not permissible since then the right hand side of (8) involves conditioning with 

respect to a set of  probability zero. Nevertheless (16) is true and the object of the rest 

of this section is a precise proofof(16) .An earlier unpublished but widely circulat- 

ed version of this paper gave a much more complicated proof  of  (16) than the one 

below. 

Fix k and let "c k = j / k  if 0, 1]k , . . . , ( j -  1) /keU,  but j/k(EU,, j = 0 1 ,2 , . . ' .  

Then 
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(17) 

Em(O,O = Z 
O~j<-ke 

> Z 
O<=j<ke/2 

Z 
O<-j<ke/2 

L. A. SHEPP Israel J. Math., 

P(Zk = j /k)  E(m(O, 01Zk = J/k) 

P(~k =j /k )E(m( j /k , j / k  + ~/2) [ zk =j /k )  

ff j /k  + t/2 

P(z k = j /k)  dy|/k P(t r U. ] Zk = J/k) dt 

where we have used (10) in the last line. The event {z k =j /k}  is the same as 

{A c U,, 0 ~ U,} where A = {0,1/k, ...,(j - 1)/k}, and 0 =j/k .  Applying (8) to 

the integrand in the last line of (i7) we obtain with t = (j/k) + s, 
/. e/2 

(18) Em(O,O> ~ P(Zk=j /k ) )  ~ P((j/k) Wsr 
O<_j<ke/2 

By rotational symmetry we obtain 

f ~/2 f el2 
(19) o P ( ( j / k ) + s C U . I j / k C U . ) d S = J o  P(tCU.]OCU.)dt. 

Using (15) (18) and (19) we obtain 

P(for some j,  0 < j  < k e/2, j / k  q~ U.) = 

f0 el2 (20) Z P(~k = J/k) <_ ~P(O r U.)/ P(t r u. ] 0 r W.)dt. 
O<=j<k~12 

As k ~ oo through powers of  2 say, the event on the left in (20) increases to 

{Q[0,~/2) c Un} where Q[0,8/2) denotes the set of dyadic rationals in [0,e/2). 

Since U. is a finite set of intervals the latter event differs at most by a null set from 

{[0,5/2)r  U.}. Hence (16) is proved. 

4. Covering; necessity 

Here we essentially follow the method of  Billard and Kahane [4]. 

Define co, Ix,...,In,U n = U ] =  lIj, m ( 0 , e ) =  m (0,/~,o9) as the measure of the 

uncovered part of  [0 ,e) jus t  as before and set 

{10 [0 , e ) r  U,(o9) 
(21) ~b(o9) = [0, e) c U.(o9). 

Since either q~(o9) = 1 or m(0, e, o9) = 0 we have 

(22) m(0, e, o9) = c b(og)m(0, 5, o9). 

Applying Schwarz's inequality, 

(23) (E m(0, 5)) 2 < E q~2E mS(0, e) 
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Since r = r from (11) we obtain 

(24) P([0, 8) r U.) > ~2p2(0 r U.)/E m2(0, e) 

But from (10) and rotational symmetry, 

Em2(O,e)= E fo ~ fo~Z(s,og)Z(t, og)dsdt 

for: = ds dt P(t r U., s r U.) 

= 2 ds dtP(tCU.,sCg.) 

"ds dtP(t sCU., OCU.) = 2 - -  

(25) 

= 2  fo dS fo dtP(tCV., oCU.) 

for = 2 dt ds P(t r U., 0 r U.) 

2 ff(e - t)P(t r U., 0 r U.) dt 

<= 2e P(tCU., OCU.)dt. 

From (24) and (25), replacing e by e/2, 

t" ~/2 
(26) P([O,e/2)r U.)>=(�88 Jo P(tCU.]OCU.)dt. 

Thus (16) is valid with the inequality sign reversed except for a factor �88 

5. Infinitely many  ares, n ~ 

Denote U = U . ~  1I.. By the Heine Borel theorem, 

(27) {[0,el r U} = 5 {[0,e] r U.}, 
n = l  

and since the events {[0,el = U.} decrease 

(28) P([0,e] r U) = lira P([0,8] r U.). 
t~"'~ q~ 

333 
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If 1 > 11 > 12"" and 28 < 1 - 11 then (12) holds for all n and so (16) and (26) 

apply to the terms on the right side of (28). It follows from (16) that 

P(0 r Vn) 
(29) P([0,e] q: U) < 28 lim inf 

ff p(tCu.loCu.)dt 
and from (26) that 

P(O r un) 
(30) P([O,e] r U) > 8/2 lim sup 

B-'~ aO fO 1~ P(te U, lOe U,)dt 

LEMMA 2. C is covered a.s. if and only if 

f~P(teUn,O6Un) 
(31) limn_~oosup Jo [~(~--~--)-~ dt = oo 

for all 8 > 0 (equivalently, for some e > 0). 

PROOF. If C is covered a.s. then [0, 8] is covered a.s. for all e > 0 and so the 

left side of(30) is zero. Thus (31) holds for all ~ > 0 since the term under the lira 

sup in (30) is the reciprocal of the one in (31). Conversely, if (31) holds for some 

eo > 0 then the right side of (29) is zero and so [0, eo] is covered with probability 

one. But so then by rotational symmetry are [eo,2eo], [28o, 3%], ... covered a.s. 

and hence C is also covered a.s. This proves the lemma. 

REMARK. By (29) and (30) the lim sup in (31) could equivalently be replaced 

by lim inf. 

(32) 

and 

6. The condition 
As justified in the introduction, we assume from now on that {ln} has been 

rearranged in nonincreasing order. It remains to determine for which {ln}, (31) 

holds. By independence of I~,..., In, 

)=jf , f i  P (O6I j )=~=l  f i  ( 1 - / j ) ,  P(OeU,)=P (5]=1 {0r 

P(tr U.,Or U~) 
(33) 

= P(~'fD1 {t•lj, O•Ij}) 

= f i  P(tr Or 
j = l  
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I f  0 < t < �89 it is easy to see that 

P ( t  r I j ,  0 (s I j )  = P( t  (s I j )  - e ( t  (s Ij,  0 ~ Ij) 
(34) 

= 1 - lj - rain(/j, t). 

Thus the necessary and sufficient condition for covering, (31), becomes 

(35) lira sup [(1 - Ij - min(li,  t))/(1 - l j) 2] dt  = oo. 
n~cr dO j= l  

for some or all e > 0. 

The remainder of the proof is of course to show that (35) is equivalent to (1), 

which is an immediate consequence of the following two lemmas. Again {l,} is 

assumed nonincreasing. 

LEMMA 3. I f  ~,l  2 < O0 then (35) is e q u i v a l e n t  to (1). 

LEMMA 4. I f  ~ l  2 = O0 then (35) a n d  (1) both hold.  

To prove Lemma 3, choose K so that l~ < �89 and set e = I r .  Recalling that 

Ir > lr+1 > --. > l,, for n > K, the integral in (35) for e = I r  breaks up for n > K 

into the sum of integrals over the intervals (0, ln), ( l , ,  l ,_  X), "",  ( l r+ L, I t ) .  Noting 

that min(lj,  t) = l~ for lk+l < t < I k a n d j  > k; min(lj ,  t) = t for lk+a < t < I k and 

j < k, the integral in (35) becomes 

fOlk f I  [(1 -- l j -  m i n ( l ~ , t ) ) / ( 1  -- l~)2]dt  
j= l  

n-1 f/lk k 1-] 
= 2 I-I [ ( 1 - 1 j - t ) / ( 1 - l j )  2] 

(36) k = r  ~+,~=1 j=k+a 

fo'" + ~ [(1 - lj - t) /(1 - l~)~]dt. 
j= l  

Since I. is square summable, the product 

(37) f i  [1 - ( l j / ( 1  -- Ij))2], 
j=k+l 

[1 - ( l j / ( 1  - l j ) )  2"] d t  

is uniformly bounded away from zero and infinity in the range 0 < k < n < co. 

Also, the product 

fI1,  - ,  fl 
(38) = (1 lj t + 0(12)) 

i=, -(f- + - ]=I 

may be replaced in (36) by 
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(39) exp[l~ + - . .  + l k -  k t]  

since the rat io o f  (38) to (39) is for  0 _< t _< lk, 

k 

(40) I~ (1 + O(l~)) 
j = l  

which is bounded away f rom zero and infinity since ~ 17< oo. Thus (35) becomes 

oo = lira sup (ll + ' "  + lk -- k t ) d t  
k k = K , d  lk§  (41) "- '~ 

+ f o ' " e x p ( l l + . . . + l . - n t ) d t ]  . 

Performing the integrations, the nth term in (41) becomes with s k = Ia + -'- 4- l~, 

n - 1  

~2 [exp(sk+ t - (k + 1)lk+t) -- exp(s k -- k l k ) ] / k  
(42) k = 

+ 1 / n e x p s ,  -- 1 / n e x p ( s ,  -- nl ,) .  

Summing by parts, (42) becomes 

1 /nexps , ,  + ~ [exp(sk--  k l k ) ] / k ( k -  1) 
(43) k = x+ 1 

- exp(sK -- K I K ) / K .  

Thus if ]~l, z < oo, (35) holds if  and only i f  at least one o f  

lira sup 1 / n e x p ( l  1 + ... + l,) = oo (44) 

o r  

(45) 1 / n 2 e x p ( l l  + ... + 1, - n l , )  = oo,  
n = l  

holds. Lemma 3 now follows easily f rom the next two 

2 l  2 < oo, l, decreases to zero and so (35) .,~ (44) or (45) (as 

(45) (by lemma 5) ~ ,  (1) by lemma 6). 

LEMMA 5. I f  l, decreses to zero,  (44) impl ies  (45). 

LEMMA 6. I f  I, decreases to zero,  (45) is equ iva len t  to (1). 

PROOF OF LEM~A 5. Define for  all n > 1, 

(46) ~, = lj + ... + l, - n l ,  

and observe that  ~, increases with n since 

lemmas, since i f  

shown above) 
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(47) 4,+~ -- 4, = n(l ,  -- l ,+,).  

Dividing by n and summing over n > k we see that 

(48) lk = ~, (4,+1 -- 4 , ) /n ,  k > 1. 
n>_k 

Summing by parts we obtain for k >_ 1, 

(49) l ~ + . . . + l  k = k  ~2 4 , [ 1 / ( n - 1 ) - l / n ] .  
n > k  

Suppose now that (44) holds but (45) fails and the sum in (45) takes the value 

exp M < oo. Since 

(50) Z 1/n 2> ~, [ 1 / n - 1 / ( n + l ) ] = a / k ,  
n>k  n>k 

we have since 4, increases, 

(51) exp M > ]~(1/n2)exp4,,> ]~ 1/n2exp~k  > 1/keXP4k.  
n>k n>=k 

Thus ~k < M + log k, k > 1 and from (49) we obtain 

l ~ + . . . + l  k < M + k  ~, l o g n [ 1 / ( n - 1 ) - l / n ]  
n>k 

= M + l o g k + l + k  X ( l o g ( n + l ) - l o g n ) / n  
(52) ,>k 

< M + l + l o g k + k  Y~ 1/n  2 
n>k 

< M + 2  + l o g k ,  

where we have used log n + 1 - log n = log(1 + (1/n)) < 1/n. Thus, for all k 

(53) 1/kexp(l~ + ... + lk) < exp(M + 2). 

and so if (45) fails so does (44). Lemma 5 is proved. 

PROOF OF LEM~A 6. The implication (45) :~ (1) is trivial since nI, > O. To 

prove (1) :~ (45), we note that if (45) fails, 

(54) ~ ~b,< oo 
n = l  

where 

(55) qS, = (1/n z) exp 4, 

and 4, is again given by (46). Since the exponential function is convex and 

(56) k 2 : [1 / (n  - 1 )  - 1 ~ h i  = 1 ,  
n>k 
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we obtain 

(57) exp(k 2~ l o g ( o , [ l / ( n - 1 ) - l / n ] ) < k  Z qb , [1 / (n -1 ) - l / n ] .  
n>k n>k 

Using (49), we obtain from (57) since 4, = log(n2~b,) 

exp(ll + ."  + Ik)=ex p {k ]~.>k [ l~  

(58) , [exp(2/c  ~ k l o g n ( 1 / ( n - 1 ) - l / n ) } ]  [k,,~kq~,,(1/n--1)--l/n)]. 

As in (52) we obtain that the first term 

exp {2(2 + log k)). Thus, 

(59) exp(ll + "'" + lk)  <= (exp4)k2k 

in square brackets is bounded by 

X ~b,(1/(n - 1) - 1 [n). 
n>k 

Dividing by k 2 and summing, we obtain 

1/kZexp(ll + ... + Ik) < (exp4) s 
(60) k=X 

E k qS,(1/(n - 1) - 1/n) 
k = l  n>k 

= (exp4) ~ ( ]~k]dp , (1 / (n -1 ) - l / n ) - � 89  ~b,<oo 
n =  1 \ k < n  ! n = l  

because of (54). Thus (1) fails if (45) fails and Lemma 6 is proved. As observed 

above this completes the proof of Lemma 3. 

PROOF OF LEMMA 4. It seems difficult to prove directly that ]El 2 = oo implies 

(35) holds. We proved that (35) holds if and only if C is covered hence Lemma 4 

follows immediately from the next three lemmas. 

LEMMA 7. I f  2~,~ ~I 2 = oO then (44) holds. 

LEMMA 8. If  (44) holds then C is covered. 

LEMMA 9. I f  (44) holds then (1) holds. 

PROOF OF LEMMA 7. If  (44) fails there is an M < oo for which 

(61) ~ l ~ < l o g n + M ,  n > l .  
i=1 

Since I, are nonincreasing, 

(62) I, <-_ 1/n 
i = l  

(log n + M) 
l i<  , n>l= 

n 

and so E I, 2 < oo. Thus Lemma 7 is proved. 
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PROOF OF LEMMA 8. This is proved in [4, p. 89]. We give the short proof  for 

completeness. Define as before 

(63) Un = G Ii" 
.i=1 

If  C r U, there is at least o n e  lk ,  k = 1, ...,n whose counterclockwise endpoint 

0 k is not covered by Ij  f o r j  = 1, ...,n,j ~ k. Thus 

(64) P(Cr U,,)< ~ P ( ("~ (Ok~Ij}). 
k=l  j = l  

j~k 

By independence the kth term of the sum is 

(65) 

From (65) and (66), 

j = l  
j ~ k  

P(C r U,,)<= ~ (1-Ik)-1] I-~ ( 1 -  lj) 
= 1 j = l  

(66) < n(1 - ll) - I  I~ (1 - lj) 
j = l  

< n(1 - 11)- lexp [ - (11 + " -  + / , ) ] .  

Using (28) with e = 1, and letting n ~ o% we obtain 

(67) P{C r U} = lim P{C r = O, 
n ---~ oo 

because the lira inf of the last term in (66) is zero if (44) holds. This proves 

Lemma 8. 

PROOF OF LEMMA 9. If(44) holds and I~ ~ 0 then (1) holds because of  lemmas 

5 and 6. If  l, does not tend to zero then there is a ~5 > 0 for which l~>~ for alln 

and (1) holds trivially. Thus Lemma 9 is proved. 

Since Lemmas 3 and 4 are proved, (1) has been shown to be necessary and 

sufficient for covering. 

7. Examples and remarks 

REMARK 1. If  C is covered a.s., then C is covered infinitely often a.s. 

PROOF. Denote 
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(68) V, = 0 Ii ,  n = 1,2 , . . . .  
j = n + l  

Note that the event that some point of C belongs to only finitely many intervals Ij  

can be written as 

(69) 

Fix n and choose e > 0 so that 

(70) 

0 {c r v.}. 
n = l  

max(/l ,  ..., 1,) + e < 1 

and let I be the interval with clockwise endpoint at 

max (/1, "", l,) + e. Since U, and V, are independent, 

(71) P(C - I r V.)P(U. = I)  

Since P(U,  c 1) > 0, we see that 

zero and of length 

= P ( C - I d g V , , , U , , c I )  

<= P( C dg U) = O. 

(72) P(C - I r V,) = O. 

Since C - I is an interval and since C is a union of translates of C - I it follows 

from (72) that 

(73) P(C r V,) = O. 

Thus the union in (69) also has probability zero and the remark follows. 

We have followed [4] in taking the intervals 11, I2,-"  to be open. This simplifies 

the uses of the Heine-Borel theorem in (27) to show that events such as {C = U} 

are actually measurable. However, it is easy to show that taking the intervals 

closed or half-open changes none of the results. 

Since (2') is known [7] to be sufficient for covering, we must have (2'):> (1). 

A direct proof that (2') =~ (1) can be given as follows. Suppose that (2') holds but 

(45) does not. Then for any e > 0 there is an N for which for k > N, 

(74) ~ 1 /nZexp~ ,  < e  
n ~ k  

where 4n are defined by (46). From (51), exp ~, < ke for k > N, and from (49) and 

(52), with M = log e, 

(75) 1/k exp (l I + ... + Ik) <= e(exp 2), k > N. 



Vol. 11, 1972 RANDOM ARCS 341 

Thus lira sup(exp( l  a + .-. + I k ) ) / k  = 0 and (2') fails. Hence (2')=>(45). By 

Lemma 6, (1) also holds and so (2')=> (1). 

On the other hand, (2') is not necessary for covering as the following example 

shows. 

EXAMPLE 1. l = l / n - - e / ( n l o g ( n + l ) ) , n = l , 2 , . - . , 0 < e < l .  

For this example, (1) holds and so covering takes place. However (2') fails to 

hold. 

Since (3) is known [1], ['4-[ to be necessary for covering, we must have (1) =~ (3). 

A direct proof  that (1) =~ (3) can be given as follows. By Lemma 6 (note that we 

may assume that I, decreases to zero), if (1) holds, 

. = 1  

n = l  

( 1 / n  - 1 / ( n  + 1))exp(ll  + . . .  + l .  - n l , )  

= 1 / n  [exp (11 + "-- + l, + 1 - (n + 1)I. + 1) 

(76) - exp(l l  + . . .  + l .  - n l , ) ]  

= Z 1 / n E e x p ( l ,  + . . .  + / , ) ] ] - e x p (  - nl,+l)](1 - e x p ( -  n ( l , -  l.+1))) 
. = 1  

where we have summed by parts in the second line. Since 1 - exp( - u) < u, we 

obtain, again summing by parts in the second line, 

(77) 

n = l  

n = 2  

. = 2  

. = 1  

( I ,  - l ,+ l )exp( l l  + ... + I , )  

l . [ e x p ( l  1 + . . .  + I . )  - (1~ + . . .  + I._~)] 

/,[exp(/1 + ... + / , ) ] ( 1  -- exp( -- l,)) 

12 exp(/I + -.. + l,). 

Thus (1) =~ (3). 

On the other hand, (3) is not sufficient for covering as the following example 

shows. 

EXAMPLE 2. Define 

(78) n(1) = o, n(k) = 22k + n(k - 1), tc >= 2, 
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(79) 

(80) 

Then  for  k > 2, 

(81) 
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e(k) = (2 k - ~ -  1)/2 2k, k >__ 2 

I i = e(k) log2,  for  n ( k -  1) < j  < n(k ) .  

11 + .. .  + In(k) -- (2 k -- k - 1) log2 

For  n ( k  - 1) < n < n(k),  

(82) la + ""  + 1. - n l .  = l I + . . .  + l.(k) --  n (k) l . (k )  

and so f rom (81) and (82), 

]~ 1 / n  2 exp I l l  + "'" + I. - n l . ]  
n(k - l )<n~n(k )  

(83) = (.(k-~)<~_~.(k) 

Since 

(84) n ( k )  > 22~ and E 
n(k-1)<n 6n(k) 

we obtain f rom (83) by summing on k, 

(85) 
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1 / n  z )  2 2~ - k - 1 - E(2 ~-x - On(k) /2  2~-1 

1 / n  2 <= 1 / ( n ( k  - 1)) < 1/22k- 1 

oo 
Y_, 1 / n 2 e x p [ l l  + .. .  + I , , -  nl,,] 

~.~ k - i  22k_ 1 _-< 1/22 -k  < 00. 
k=2 

Thus (45) fails and by Lemma  6, (1) also fails. Thus Example 2 is not  a case of  

covering. We show that  nevertheless, (3) holds for  Example 2. 

We have f rom (80), summing a geometric progression, 

(86) ~ /2exp(/1 + ... + l,) 
n(k-  1)<n ~_n(k) 

= (e(k)Iog2)  2 ~ exp(/1 -{- .-- q- In(k_1) q - ( n  --  n ( k  - 1))/n(k) ) 
n(k-1)<n~n(k)  

= (e(k)log2)2(1 - e x p ( -  lntk))) Iexp(Ix + "" + l,(k)) -- exp( l l  + "'" + Intk-1))] 

Since by (80) and (81), as k ~  oo 

(87) ( e ( k )  log 2)2(1 - exp ( -  l ,(k))) ~ e ( k )  log2 

and the final square bracket  in (86) is asymptot ic  as k -} oo to exp( l  I + ... + l,,tk)), 

summing (86) on k, we obtain 
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(88) 
1.2exp(la + ... + 1,) ,,~ ~, e(k)exp(1, + ... + I.~1) 

n = l  k = l  

,~ (2 k/2 2k) 2 2~-k = oo 
k = l  

where ~ between series means the series both converge or both diverge. Thus (3) 

holds for Example 2 and so (3) is not sufficient for covering. 

8. The case of equal lengths 

There is no known simple formula for the probability of covering the circle 

with n arcs of different lengths. However, if  11 = 12 . . . . .  I, = ~, Whitworth 

[9] showed that 

P(U,(a) qbC)= Y. ( -  1 ) k - a ( n } ( 1 - -  (89) koO n-1  

1 <k< 1/a \r~ ] 

where U,(a) denotes the union of the n arcs of length e. For small e and large n 

the right side of(89) becomes difficult to estimate due to the violent oscillations of 

the summands. In such cases the methods of this paper provide convenient bounds 

for P(U.(a) ~b C). 

For a _< �88 an upper bound is obtained from (16) by setting e = 1, and using (34) 

P(U,(a) :~C) < 4P(U,(a) ~b[0,�88 

/ fo ] (90) < 2(1 - c02" (1 - ~ - t)"dt + (�88 - ~)(1 - 2c0" , 

while a lower bound is obtained by setting e = 1 in (24), and noting that 

= 2 f ~  P(t r U,, 0 • U,)dt ,  Era2(0,1) 

/If: ] (91) P ( U ( a ) r 1 8 9  2" ( 1 - a - t ) " d t + ( � 8 9  . 

We may use the above bounds to study the distribution of the random variable 

N,, the first n for which U (a) = C, for small values of a. 

We note that 

(92) 

Define 

P(N~ > n) = P(U (~) dg C). 

(93) n(a) = (1/a) log 1/a + (1/a) log log 1/~. 



344 L.A.  SHEPP Israel J. Math., 

We will show that as ~-0 0, ~ ( N , -  n(~)) has a proper limiting distribution 

(having exponential tails); in fact, for - oo < x < oo fixed, 

(94) �89 ~ + �89 < lim P(N,  > n(oO + x[oO < 2(e ~ + �88 
a t ~ 0  

To see this, set n = n(~) + x/o~ in (90) and (91) and apply (92) and the following 

easily proved statement valid for any a > 0. I f  n = n(~) + x/cr with x fixed, then 

] (95) lira (1 - ~)2, (1 - 0~ - t)"dt + (a - ~)(1 - 2~)" = (e x + a) - t  
ar--~ 0 

In particular, from (94) 

(96) (N, - 1 ]~log 1/~)/(1/~ log log 1/~) ~ 1 

in probability a s ,  ~ 0. 

Similarly, it follows from (90) and (91) that the expectation of N. satisfies 

(97) E N , = n ( a ) + O ( I / a ) .  as ~ 0 .  

However, as far as (97) is concerned. Steutel [8] has obtained a sharper result 

(extending earlier work of Flatto and Konheim [3]) 

(98) g N~ = n(~) + ~/~ + o(1/~) as ~ ~ 0 

where 7 is Euler's constant, by using Laplace transformation methods based on 

(89). Our inequalities are not sharp enough to obtain (98) or the limiting dis- 

tribution of  0c(N,-n(~)). On the other hand it seems difficult to obtain the 

existence of  a proper limiting distribution of  c~(N,- n(~)), or even (96), which is 

new, by methods based on (89) directly. 

ACKNOWLEDGEMENT 

It is a pleasure to thank S. P. Lloyd for his consistently valuable comments. 

We thank A. Dvoretzky for kindly pointing out an error in an example and 

simplifying our condition for covering in an earlier manuscript version of this 

paper. 

REFERENCES 

1. P. Billard, Sdries de Fourier aldatoirement born~es, continues, uniform~ment convergentes, 
Ann. Sci. Ecole. Norm. Sup. 83 (1965), 131-179. 

2. A. Dvoretzky, On covering a circle by randomly placed arcs, Proc. Nat. Acad. Sci. U. S. A. 
42 (1956), 199--203. 



Vol. 11, 1972 RANDOM ARCS 345 

3. L. Flatto, and A. G. Konheim, The random division o f  an interval and the random co. 
vering of  a circle, SIAM Rev. 4, (1962), 211-222. 

4. J. P. Kahane, Some Random Series of  Functions, D. C. Heath and Co., 1968. 

5. B. B. Mandelbrot, Renewal sets and random cutouts, Z. Wahrscheinlichkeitstheorie und 
Verw. Gebiete, in press. 

6. B. B. Mandelbrot, On Dvoretzky coverings for the circle. Z. Warscheinlichkeitstheorie 
und Verw. Gebiete, in press. 

7. S. Orey, Random arcs on the circle, Journal Analyse Math. to appear. 

8. F. W. Steutel, Random division of  an interval, Statistica Neerlandica 21, (1967), 231-244. 

9. W. A. Whitworth, Exercises on Choice and Chance, Deigton Bell and Co., Cambri- 
dge, (1897). (Republished by Hafner, New York, 1959). 

BELL TELEPHONE LABORATORIES, INC. 
MURRAY HILL, N. J. 


